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A method is presented to determine the n-dimensional space groups if the arithmetic 
crystal classes are known. It considers space groups as group extensions and gives a 
relation between the nonequivalent extensions and a set of vectors in a certain linear 
vector space. In this way we transform the group extension problem into a problem 
of linear algebra. In fact the method can be used to determine the nonequivalent exten- 
sions of a free Abelian group by an arbitrary finitely generated group. The algorithm has 
been used to determine four-dimensional space groups by means of an electronic 
computer. 

1. INTRODUCTION 

The Euclidean group 10(n) in n dimensions is the group of n-dimensional 
inhomogeneous linear transformations which leave the distance of any two points 
invariant. It contains as a subgroup the group of n-dimensional translations R” 
and the orthogonal group O(n).l An n-dimensional space group G is a subgroup 
of 10(n) such that its intersection with Rn, U = G n R”, (1) is isomorphic to Zn, 
the additive group of n-tuples of integers, and (2) is generated by n linearly 
independent translations. It can easily be shown that U is an invariant subgroup 
of G and that the factor group G/U is isomorphic to the point group K, which is 
the subgroup of O(n) consisting of all elements Q: occurring in elements (a ] u} of G. 
In the theory of groups this situation is well known. It means that G is an extension 
of Zn by K. (For those who are not familiar with group extensions some important 
concepts are explained in the appendix.q The mapping p : K -+ GL(n, 2) which 
is associated with the extension is a monomorphism, which means that p(K) 
is a faithful n-dimensional integral representation of K. Moreover, K is finite. 
The situation can be visualized in the exact sequence 

I-P&G-K-l. (v) 

1 The elements of IO(n) can be written as {LX 1 t) with OL E O(n) and t E R”. 
2 There also some other group-theoretical notions, used in this paper, are defined. 
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On the other hand, each extension of Zn by a finite group K with a mono- 
morphism ‘p : K -+ GL(n, 2) can be imbedded as a space group in IO(n) [I]. 
Therefore all n-dimensional space groups can be obtained from a knowledge 
of all extensions of this kind. According to the analysis given by Ascher and 
Janner [I], it is sufficient to determine all nonisomorphic extensions of Z” for 
one representative of each arithmetic crystal class, i.e., of each conjugacy class of 
finite subgroups of GL(n, Z). 

For a given set of representatives of the arithmetic crystal classes the problem 
is reduced to the determination of all nonisomorphic extensions with these groups 
F(K). We treat here the first step, the determination of all nonequivalent extensions. 
Two extensions are called equivalent if there exists an isomorphism $ : G -+ G’, 
which restricted to U is the identity and which induces the identity transformation 
on G/U, i.e., for which the diagram 

l--+z”---+ G-K-1 

is commutative. (A diagram is called commutative if it does not matter in which 
way one runs through the diagram along the arrows.) The nonisomorphic exten- 
sions may then be found if one knows the normalizer of y(K) in GL(n, 2) [2], 
which is the subgroup of GL(n, Z) of all elements A such that &J(K) A-l = y(K). 

To determine all nonequivalent extensions one can make use of a theorem 
by Hall [3]. The extensions are determined by a set of generators and defining 
relations. Suppose K is generated as an abstract group by elements (Ye ,..., 01, 
with defining relations di(aI ,..., 01,) = E (i = l,..., t). Consider the decomposition 
of the extension G in cosets of Zn and choose in each coset a representative. 
The representative of the coset which is mapped by o on (y. E K is denoted by r(a). 
Then each element g E G can uniquely be written as (we use the additive notation 
for G and Zn) 

g = a + r(a) (a E Z”, a E K). 

Because r(o1) + r(p) = m(ol, fl) + r(orj3) f or some element m(ol, /3) E Z”, the group 
G is generated by a, ,..., a, , r(olI) ,..., r(q), where a, ,..., a, form a basis for Zn. 
Because the elements &(r(o&.., r(aJ) E G are mapped by u on the unit of K, 
there exist elements g, , g, ,..., g, in Z” such that 

sbi(r(ol,),.-., r(4) = gi (i = l,..., t). 

These relations, together with the relations 

r(a) + a - r(a) = cp(a)u (all (Y E K, all a E Z”), 
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determine G completely. However not every set (gI ,..., gt} of elements of 2” 
determines an extension. A necessary and sufficient condition on these elements 
can be found as follows. The integral group ring of K consists of all elements 
CII m,cu, where m, are integers. The elements of the integral group ring operate 
onuEZnby 

Now suppose that another set of coset representatives is chosen. Then one has 
r’(a) = U(N) + r(a) (all 01 E K, U(CY) E 2”). Then there exist elements rITi(olj) of 
the integral group ring of K such that 

Because of relation (1) an element of the integral group ring corresponds for 
fixed y(K) to a n x n matrix. Denote nt by p and nv by q. Define a p-dimensional 
supervector build from g, ,..., g, E Z”, 

+ “;’ EZP, 
0 gt 

and a p x q matrix, 

Using the theorem mentioned before one can show [2] that $ determines an 
extension if and only if C$ belongs to the discrete point set l7R* n Zp, i.e., all 
points in Zp which can be obtained by the supermatrix from a vector in the real 
linear space R*. Moreover C$ and c$’ determine equivalent extensions if and only if 
#J - 4’ is an element of the point set 17Z’J. If one defines the sum of two relation 
vectors 4 and 4’ by their vector sum the elements of 17Rq n Z* form an Abelian 
group. A subgroup of this group is formed by all elements of li’Zq. Therefore to 
determine all nonequivalent extensions of Zn by a fkrite group K one has to deter- 
mine the factor group 

(I7Rq n Z~)/lIZ? (2) 

This Abelian group is isomorphic to the groups Ext(K, P, rp) E HVz(K, Zn) 
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which are well known in the theory of group extensions. The present group exten- 
sion problem may be solved by the determination of the group (2). In this way 
we have transformed the group extension problem to a problem in linear algebra. 
We give here an algorithm for its solution which is well suited for treatment 
by a computer. We note that the same method can be used for the determination 
of the nonequivalent extensions of 2” by an arbitrary finitely generated group, 
which is not necessarily finite or for which ~J.J is not a monomorphism. 

2. DETERMINATION OF THE NONEQUIVALENT EXTENSIONS 

To determine the elements of the set (2) one applies automorphisms P E GL(p, Z) 
and Q E GL(q, Z) such that the matrix PIIQ has the form 

17’ = PIlQ = > di 3 0. (3) 

This may be achieved as follows. Suppose the elements of fl are zero in the first 
k - 1 rows and columns, possibly with exception of the diagonal places. Then 
consider the k-th row. If there is only one nonzero element in this row, say on 
place (k, I), interchange the k-th and I-th columns. If there are more than one 
nonzero elements, either one of the row elements is a common divisor to all 
other row elements, or such a common divisor does not occur. In the first case, 
if a common divisor occurs in the Z-th column, subtract this column as many 
times from the other ones as necessary to make all elements in the k-th row zero 
except the I-th one. Then interchange the k-th and I-th columns. In the other case 
consider two nonzero elements in the k-th row and apply the Euclidean algorithm 
to these elements. This means that one subtracts the column with the element of 
smaller absolute value as many times from the other one as necessary to make the 
resulting element in the k-th row smaller in absolute value than the element in 
the former column. Proceeding in this way one obtains zero in one column and 
the g.c.d. in the other one. This can be continued with other pairs of elements of 
the k-th row till only at most one nonzero element is left in this row. This element 
can be brought to the k-th column. 

In the same way one proceeds in the k-th column. After this procedure the 
elements in the k-th row are either still zero or nonzero elements have been 
produced. In the former case continue with the (k + l)-th row, in the latter case 
repeat the algorithm for the k-th row and column. Because the number of prime 
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factors is finite, one reaches in a finite number of steps the situation where both 
k-th row and column have atmost one nonzero element on the (k, k) place. 

The given procedure results in a matrix which has the required form (3). If Eij 
is a matrix with only one nonzero element (which is equal to 1) on the (i,j) place, 
all steps in the procedure are given by right or left multiplication by matrices, 

Xii = 1 + Eij 3 

Nii = 1 - 2Eii, 

Yij = 1 + Eij + Eji - Eii - Ejj 9 

where i, j = l,..., p for left multiplication and i, j = I,..., q for right multiplication. 
The product of all matrices occurring in right multiplications is denoted by Q, 
the product of the other matrices by P. The matrices P and Q satisfy relation (3). 

Consider now the set 

(I7’Rg n Zp)/ITZ~. (4) 

The elements of this set are given by 

where ei is an element of Zp with i-th component equal to one and everywhere 
else zero; IZ$ is an integer given by 

0 
ni = 

if di=OOrl, 
o, 1 ,...) d$ - 1 otherwise. 

If 4’ is an element of the set (4), 4 = P-%,4’ is an element of (2). Hence the 
nonequivalent extensions are given by the relation vectors 

Define a p x q matrix A with elements 

Ai, = 6ij X 
I 
i if di>l, 

if di=Oorl. 

The columns ei (i = l,..., q) of P-IA are generators for the group (2) if we identify 
diei and zero. The Abelian group (2) is a direct product of cyclic groups Cmi 
(mi are the numbers di which are greater than one). The cyclic group Cm, is 
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generated by ei and has order mi . In other words, the numbers di greater than one 
are the torsion numbers of the group (2), hence of Ext(K, Z”, y). 

The split extensions, which are equivalent to the semidirect product and which 
give rise to the symmorphic space groups, correspond to 

4 = i mi(d& (m, ,..., ma arbitrary integers). 
i=l 

This subgroup is generated by the vectors diP-Qi (i = l,..., 4). These are the 
columns of P-W’. 

3. NONPRIMITIVE TRANSLATIONS 

Since K is finite and p, a monomorphism, G may be imbedded as an n-dimen- 
sional space group in ZO(n). Hence its elements may be written as {LX I u(a)}, 
which is defined by 

{a 1 u(a)} : r + ar + u(a) (r E Rn, u(a) E R”, a E K). 

The element u(a) corresponding to cx E K is defined up to an element of Z”. 
According to Ref. [2] a system of nonprimitive translations (u(ol)},,, is already 

determined by U(IX ) 1 ,..., u ( CX”) because of the relation 

u($) = UC”) + oIu(/Q (mod 2”). 

If U(c$),..., u(ol,) determine a system of nonprimitive translations, a relation 
vector is given by 

gi = ~itr(czl),..., r(d) 

On the other hand, a system of nonprimitive translations is found as follows 
for a given relation vector #J. 

Define a diagonal q x p matrix D by 

Dij = 

i 

dc16ij if di # 0, 
o if di = 0. 

Then according to Ref. [2] there corresponds to a relation vector (5) 
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a system ~(a~),..., ~(a”) given by a vector U E Rq, 

= U = QD$' = i niQDci. 
i=l 

Also the set of elements U corresponding to nonequivalent extensions can be 
given the structure of an Abelian group. It is isomorphic to Ext(K, Z”, 9). The 
element U corresponding to 4 = ei is given by QDEi , which is the i-th column 
of Qo.‘Therefore the columns of QD generate the group of nonequivalent systems 
of nonprimitive translations if we identify di times the i-th column with zero. 
This result is in fact the same as that obtained by Zassenhaus [4]. The relation 
between his method and the present one is discussed in Ref. [2]. 

4. PROGRAM 

A FORTRAN program has been written for the determination of the group (2) 
for given y(K). The program was restricted to IZ < 4 and to 25 isomorphism 
classes of the real (3 + I)-reducible four-dimensional crystallographic point 
groups. These correspond to the three-dimensional magnetic groups. However 
this restriction is not essential. 

/ 

1 GENER 1 

/ 

1 DIAG 1’ 
\ 

1 PITAB 1 

\ 
1 SCHRYF 1 

GENER. The group v(K) may be given by its isomorphism class and its 
generating matrices. As two groups y(K) and p’(K), which are conjugated in 
GL(n, R) but not in GL(n, Z), are linked by a matrix T from GL(n, R), it is 
sufficient to give the generating matrices of one representative of each geometric 
crystal class (i.e., conjugacy class in GL(n, R)) and a conjugation matrix T for 
each representative point group from an arithmetic crystal class in the same 
geometric crystal class. The subroutine GENER calculates ~(cYJ = Tq(ai) T-l, 
where +(a&.., q(%) are generators for the representative group q(K) of the 
geometric crystal class. 

PITAB. For each isomorphism class the integral group ring elements rri(o~j) 
are known. Because of relation (1) they can be represented by II x n matrices. 
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For given elements 7~~(olJ = CaoK mya these matrices are given by 

The matrices T(~T~(+)) are calculated for given rnc and with the ~(LY~) from 
GENER. From these matrices v(ni(aj)) the supermatrix L7 is constructed by the 
subroutine PITAB. 

DIAG. The main program diagonalizes the matrix J7 according to the 
procedure given in Section 2. It keeps the matrices L7’, VA, P-l, and QD. 

SCHRYF. This subroutine prints the matrices P-IA, P-II?‘, and QD, 
which give the nonequivalent relation vectors, the split extensions, and the 
nonequivalent systems of nonprimitive translations, Finally it prints the diagonal 
elements of 17’ which are greater than one. These give the torsion numbers of 
Ext(K, Z”, y). 

A typical example is given by the three-dimensional arithmetic crystal class 
P4/m. Its isomorphism class is C, x C, and a point group from this class is 
generated by 

A group C, x Cz is generated by 01~ and 01~ with defining relations 01~~ = 01~~ = 
-1 -1 

%012% 012 = E. Therefore v = 2, 1 = 3. The integral group ring elements ni(aj) 
are given by 

The other ones are zero. 
The program gives for the matrices P-IA, P-lI7’, QD, respectively, 

000000 
000000 
200000 
010000 
010000 
000000 
000000 
010000 
100000 

000000 000000000 
000000 000000000 
400000 ~00000000 
022000 0~1000000 
020000 0~0000000 
000000 000000000 
001000 
021000 
200000 



n-DIMENSIONAL SPACE GROUPS 9 

Therefore the group Ext(K, Z”, v) is isomorphic to C, x C, . Its four elements 
are given, either by the relations 

(0 (ii) 
0 

0 
0 
2 
0 

i) 
0 
0 
0 

0 
0 
I 

(iii) 
0 

0 
0 
0 
1 

i) 
1 
0 
0 

0 
1 
0, 

(iv) 
0 

i) 0 
2 
1 

i) 
1 
0 
0 

i) 
1 
1 

or by the nonprimitive translations 
0 

0 
0 
4 
0 

0 
0 
0 

0 

0 
0 
0 

: 

0 
3 
0 

Comparing these groups with the space groups in the International Tables for 
x-ray crystallography [7] one finds that the first one is the group nr . 83 (P4/m 
or C&). It is a symmorphic group. Our second group is nr . 84 (P4,/m or Ci,J 
in the tables as one finds comparing the nonprimitive translations. The third 
one is group nr * 85 (P4/n or C&J up to a change of origin. A change of origin f 
causes a change in the nonprimitive translations given by u’(a) = u(a) + (1 - LY)$ 
In the same way our last group corresponds to nr . 86 (P4,/n or C&) in the tables 
after a change of origin. 

The program has run on the IBM 360/40 computer of the University of Nijmegen 
for all three-dimensional and (3 + I)-reducible four-dimensional crystal classes [5]. 
For the three-dimensional case we have taken one representative from each of 
the 73 arithmetic crystal classes. The number of nonequivalent extensions with 
these 73 groups is 305. In order to obtain the nonisomorphic extensions one can 
apply the techniques explained in Ref. [2]. However, in this case identification 
of the isomorphic groups is easily made without knowledge of the complete 
normalizers. It turns out that among the 305 nonequivalent extensions there are 
219 nonisomorphic ones. It has been verified that each of these 219 nonisomorphic 
groups corresponds to one of the 219 groups in the International Tables, in the 
way sketched for the example. Proceeding to the four-dimensional case one 
finds for the 412 four-dimensional (3 + I)-reducible crystal classes a number of 
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11,187 nonequivalent extensions. For each crystal class it is possible to determine 
the nonisomorphic extensions, but this was not done in a systematic fashion, 
The calculation and the results are published as a technical report [6]. 

After we did these calculations we obtained a computer program by H. Brown, 
who uses the Zassenhaus algorithm for his calculation. It turned out that his 
program gives the same nonprimitive translations as does our own program. 

APPENDIX 

A group B is called an extension of a group A by a group C if B contains an 
invariant subgroup A’ isomorphic to A such that B/A’ is isomorphic to C. In the 
following we take for A an Abelian group. Although B is in general not an Abelian 
group we use for the groups A and B the additive notation. One can decompose B 
in right cosets of A’, 

B = u (A’ + gd. 
2 

The right cosets (A’ + gi) are the elements of the factor group B/A’. Therefore 
one can write gi = r(oii), where r is a one-to-one mapping of C into B. The 
elements r(a), with cy. E K, are the coset representatives. Any element b of B can be 
written in a unique way as b = a + r(ol) for some a E A’ and 01 E K. An element 
r(o() determines an inner automorphism of B by b -+ r(oL) + b - r(a). In particular, 
r(a) determines an automorphism p(a) of A’ by &a)a = r(a) + a -- r(a), because 
A’ is an invariant subgroup of B. This mapping of C into the group of auto- 
morphisms of A’ does not depend on the choice of the coset representatives. 
If r’(a) = a(ol) + r(Ly) with a(a) E A’ are other coset representatives, one has 
$(&)a = r’(a) + a - r’(a) = a(a) + r(a) + a - r(o1) - a(a) = v(a)a, because A’ 
is Abelian. As A and A’ are isomorphic groups y is also a mapping of C into 
the group of automorphisms of A. 

The group A’ is a subgroup of B. Therefore, there is a one-to-one homomorphism 
of A into B (a monomorphism K : A ---f B). On the other hand the mapping cr 
which assigns to each element of B the coset to which it belongs, i.e., 
cr(a + r(a)) = 01, is a homomorphism of B onto C (an epimorphism u : B--t C). 
Moreover, the image Im K = A’ is exactly the kernel of u, which is the subgroup 
of B which is mapped on they;unit el:nent of C. A sequence of groups connected 
by homomorphisms *.. G, - G, - G, *.* is called exact at G, if Im Y1 = 
Ker ?P2 . Therefore we have an exact sequence 

l---+A-yByC-1. 

Notice that the exactness at A means that K is a monomorphism, whereas the 
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exactness at C means that (T is an epimorphism. In general the mapping r : C + B 
is not a homomorphism. If there is a choice of coset representatives such that 
r(a) + r(/?) = r(c&), the elements T(CX) form a group isomorphic to C. In that 
case the extension splits and B is called the semidirect product of A and C. A 
symmorphic space group G is a semidirect product, because here the point group K 
is a subgroup of G. 

Some other notions which require perhaps a definition are the following. 
Let H be a subgroup of G and g an element of G. Then gHg-’ is again a subgroup 
of G, called a conjugate subgroup. All subgroups of G conjugate to H form the 
conjugacy class of H. As this is an equivalence class (conjugation is an equivalence 
relation) the set of subgroups of G can be decomposed in nonoverlapping conjugacy 
classes. The arithmetic crystal classes are the conjugacy classes of arithmetic 
point groups in the group GL(n, 2). If gHg-l = H the element g is a normalizer 
element of H. All normalizer elements of H form the normalizer of H in G. If G 
is the normalizer of H, i.e., if gHg-l = H for any g E G, the group His an invariant 
subgroup. For a group G a set of elements is called a set of generators if any 
element of G can be written as a product of generators. In general there are 
relations between the generators, which means that the unit element can be 
written as a product of generators. As an example consider a finite group. Any 
element, hence any generator is of finite order. Therefore for a generator g one 
has gn = 1 for some integer n. If a set of relations completely determines a group 
it is called a set of defining relations. A very simple example is the following. 
For a finite group we can take all elements as generators. Then the multiplication 
table gives a set of defining relations. If ab = c, one has ah-l == 1. 
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